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Similarity searches based on chemical descriptors have proven extremely useful in aiding large-
scale drug screening. Here we present results of similarity searching using Latent Semantic
Structure Indexing (LaSSI). LaSSI uses a singular value decomposition on chemical descriptors
to project molecules into a k-dimensional descriptor space, where k is the number of retained
singular values. The effect of the projection is that certain descriptors are emphasized over
others and some descriptors may count as partially equivalent to others. We compare LaSSI
searches to searches done with TOPOSIM, our standard in-house method, which uses the Dice
similarity definition. Standard descriptor-based methods such as TOPOSIM count all descriptors
equally and treat all descriptors as independent. For this work we use atom pairs and topological
torsions as examples of chemical descriptors. Using objective criteria to determine how effective
one similarity method is versus another in selecting active compounds from a large database,
we find for a series of 16 drug-like probes that LaSSI is as good as or better than TOPOSIM
in selecting active compounds from the MDDR database, if the user is allowed to treat k as an
adjustable parameter. Typically, LaSSI selects very different sets of actives than does
TOPOSIM, so it can find classes of actives that TOPOSIM would miss.

Introduction

Similarity searches are now a standard tool for drug
discovery.1,2 The idea behind such searches is that, given
a compound with an interesting biological activity,
compounds that are “similar” to it in structure are likely
to have a similar activity. In practice, an investigator
provides a chemical structure as a “probe”, searches over
a database of sample-available compounds, and finds
those that are most similar, which are then submitted
for testing. Similarity searching can be done on the basis
of 2D or 3D structure. 2D similarity searches, especially
those based on comparing lists of precomputed sub-
structure descriptors, are computationally very inex-
pensive.

At Merck & Co. Inc. we have set up a system
(TOPOSIM) with which a user can specify a probe and
search over descriptor databases. One set of useful
substructure descriptors with which we have experience
are those developed at Lederle Laboratories: the atom
pair (AP)3 and topological torsion (TT).4 These descrip-
tors are typically able to discover active compounds in
different chemical classes from the probe. However, the
original AP and TT descriptors are very specific: they
distinguish atom types on the basis of element, number
of non-hydrogen neighbors, and number of π electrons.
This does not allow for the perception of physiochemical
equivalence (e.g., carboxylate with tetrazole). It is
desirable to add enough “fuzziness” to the searches so
that compounds significantly different from the probe
will be discovered. One way of doing this is to keep the

method of calculating similarity the same but to modify
the descriptors. We previously5 experimented with
descriptors of the same form as APs and TTs but with
alternative “physiochemical atom types”. Another way
is to keep the original descriptors but modify the method
for calculating similarity, hence the use of LaSSI.

LaSSI (Latent Semantic Structure Indexing),6 dis-
cussed in detail in a companion paper, provides a radical
departure from our usual methods of similarity calcula-
tion. Given a large database of molecules, matrix X is
formed by elements dji which are the frequency of
descriptor j in molecule i. X is expressed as the product
of three matrices by singular value decomposition such
that:

where P is the matrix of eigenvectors of XXT, Q is the
matrix of eigenvectors of XTX, and Σ is the diagonal
matrix of singular values (the square roots of the non-
zero eigenvalues of XXT and XTX). Keeping the k largest
eigenvalues (also called singular values) gives the best-
rank k approximation to X:

The rows of Pk are the projected coordinates of the
descriptors from the database in a k-dimensional space.
These “latent descriptors” are orthogonal to each other
but linear combinations of the original descriptors. The
rows of Qk are the projected coordinates of the molecules
in that same space. If k is small relative to the number
of unique descriptors in the database, there are two
effects: some descriptors may become less important in
calculating similarity, and the descriptors become less
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independent. Thus, by changing the value of k in the
LaSSI calculation, the user can adjust the amount of
“fuzziness” in the method.

In this paper we demonstrate the utility of LaSSI for
searching large databases of chemical structures. Using
16 drug-like probe molecules, we show that LaSSI is
about as good as or better than TOPOSIM for selecting
active compounds from a large database of drug-like
molecules, but LaSSI consistently selects very different
sets of actives.

Methods

Definitions of Descriptors. Here we will use the atom
pair described by Carhart et al.3 and the topological torsion
described by Nilakantan et al.4 Atom pairs are substructures
of the form:

where ATi is the atom type of i and (distance) is the distance
in bonds between atom i and atom j along the shortest path.

Figure 1. Drug-like probes used in this study. Each is labeled by the MDDR external registry, its name, and associated activity.

Table 1. Probes and Activity Keywords Used in This Study

MDDR registry
no. of probe probe name activity keywords from MDDR no. of actives

090744 argatroban thrombin inhibitor 493
091323 diazepam anxiolytic 3820

benzodiazepine
benzodiazepine agonist

091342 morphine analgesic, opioid 869
opioid agonist
κ agonist
δ agonist
µ agonist

091479 fenoterol adrenergic (â) agonist 161
115230 captopril ACE inhibitor 490
140603 losartan angiotensin II blocker 2229
144822 israpafant PAF antagonist 1240
152580 YM-954 muscarinic (M1) agonist 858
158611 ketotifen antihistaminic 616
161853 2-F-NPA dopamine (D2) agonist 127
170534 paroxetine 5-HT reuptake inhibitor 219
170958 cyc-Pro-D-Nal-Ile-D-Pip-Pip-D-His oxytocin antagonist 176
187236 GR-83074 neurokinin antagonist 150
199183 indinavir HIV-1 protease inhibitor 641
205402 montelukast leukotriene antagonist 1165
221588 tamoxifen antiestrogen 233

ATi - ATj - (distance)
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The topological torsion is of the form:

where i, j, k, and l are consecutively bonded atoms. A previous
publication5 gives examples of a molecule partitioned into these
descriptors.

Definitions of Similarity for TOPOSIM. The default
similarity definition for TOPOSIM is the Dice index. The
similarity of molecules A and B is:

where djA is the count of descriptor j in molecule A. The index
j goes over the union of unique descriptors in A and B. SimAB

ranges from 0.0 (nothing in common) to 1.0 (identity). Two
other popular definitions were tried, cosine and Tanimoto
(reviewed in ref 2).

TOPOSIM Searches. We run similarity searches with our
in-house system TOPOSIM. During a search of a descriptor
database, TOPOSIM calculates for each database entry the
similarity against the probe for the AP or TT descriptor. In
the simplest case, the score of a molecule is its similarity. A
combination score APTT is produced by taking the mean of
the AP and TT similarities. Previous work5 shows that
combination descriptors are sometimes better at selecting
actives than either descriptor alone.

LASSI Scores. Each database entry is already projected
into the k-dimensional space and resides in the Qk matrix.
Some probes may also be in the original database. A probe z
not already in the database must be projected into the same
space by y ) zTPkΣk

-1. The similarity of the probe and database
molecules B in LaSSI is the cosine similarity (from -1 to 1):

qBx is an element of Qk and qB is a row of Qk corresponding to
molecule B.

Details are presented in our companion paper.6 It should
be noted that similarity in LSI differs from LaSSI; in LSI Σk

is used in calculating the similarity.
LaSSI Searches. For LaSSI three separate versions of X

and their corresponding singular value decompositions were
formed from AP descriptors alone, TT descriptors alone, or both
together. For any given probe and combination of descriptors,
we calculated the LaSSI similarity of the probe to each of the
candidates, treating the number of singular values k as an
adjustable parameter. We ran each LaSSI search with k ) 2,
10, 20, ... up to 1000. Note that 1000 singular values is still
very small compared to the number of unique descriptors in
most databases. In one part of the study we used the value of
k that gave the highest initial enhancement (see below).

Sorting of Scores. Once all the scores are calculated for a
database of molecules, whether from TOPOSIM or LaSSI, they
are sorted from high to low score. Ranks are then assigned:
the molecule with the highest score is rank 1, the next highest
rank 2, etc. We use only the ranks of the compounds in this
study, since the distribution of absolute scores varies from one
descriptor to another and from TOPOSIM to LaSSI.

Measures of Merit for Similarity Searches. In a previ-
ous paper5 we proposed two measures of goodness for similar-
ity methods. The measures are based on a retrospective
screening experiment. Imagine a database of N candidates.
The candidates are tested in order of decreasing similarity
score, and the cumulative number of actives found is monitored
as a function of candidates tested. The measures are: (1) How
many compounds must be tested until one-half of the actives
are found? We called this number A50. A50 can be more usefully

expressed as a global enhancement, the ratio of the A50

expected for the random case (N/2) over the actual A50. (2) How
many actives are found after testing an arbitrary small fraction
of the total database? For instance, the number of actives at
300 compounds tested could be called A@300. A@300 is better
expressed as an initial enhancement, how many more actives
in the top 300 than expected by chance.

Diversity. Our expectation is that LaSSI will find a more
diverse set of actives than TOPOSIM, in the sense that we
want to see more actives that are not obvious analogues of
the probe, especially at ranks e 300. We need a way to
measure diversity to confirm this. There is an unavoidable
circularity in comparing similarity methods by a diversity
measure since diversity itself depends on a particular defini-
tion of similarity. Our resolution is to settle on the Dice
similarity with the TT descriptor as a standard. In earlier
work,5 the TT was the least fuzzy descriptor, and it has been
our experience that only close analogues are recognized as very
similar. One simple diversity measure, which we will call the
MSP300, is equal to the mean Dice TT similarity of the probe
with all the molecules in the top 300 (not including the probe

ATi - ATj - ATk - ATl

SimAB )

∑
j

min(djA, djB)

0.5[∑
j

djA + ∑
j

djB]

LaSSI similarity ) ∑
x)1

k

yxqBx/|y||qB|

Figure 2. Curve for the accumulation of actives vs rank for
the 199183 example. Two limiting cases are also shown:
“ideal”, where all the actives would be at the front of the list,
and “random”, where all the actives would be randomly
distributed throughout the list. The closer the curve ap-
proximates the ideal line, the better the method: (A) curve
over the entire database; (B) closeup on the origin of A.
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itself if present in the list). One could do the same with only
the actives in the top 300, but that would not be as useful
because there are many situations where the number of such
actives is very small.

Database Used in This Study. To measure the merit of
the descriptors we need to have a database of molecules for
which we know the biological activities. For this purpose, we
use the MDDR (MDL Drug Data Report),7 which is a licensed
database of drug-like molecules compiled from the patent
literature. We constructed a database of ∼82 000 molecules
from version 98.1. There are ∼10 200 unique APs and ∼5 900

unique TTs in this set. Most structures have one or more key
words in the “therapeutic category” field. We will assume that
a molecule is active as an HIV protease inhibitor, for instance,
if it contains the key word “HIV-1 protease inhibitor” in this
field. There are some unavoidable limitations to using patent
databases such as MDDR. Since not every compound has been
tested in every area, one cannot assume that a compound
without a particular key word is inactive. Thus there are
probably a number of false inactives. The opposite problem is
that for some key words, not all actives work by the same
mechanism as the probe (for instance by binding to the same

Table 2. Measures of Merit for Dice and LaSSI Where the Number of Singular Values k Is Optimized

AP TT APTT

probe/activity Dice LaSSI best k Dice LaSSI best k Dice LaSSI best k

Global Enhancement
090744/thrombin inhibitors 55.7 35.8 160 33.7 19.0 290 71.6 53.2 170
091323/anxiolytics 1.3 1.1 320 1.5 1.1 20 1.5 1.1 220
091342/opioid analgesics 2.2 1.6 800 1.1 3.3 40 1.7 1.7 470
091479/adrenergic agonists 1.5 28.7 330 27.3 77.3 220 9.4 14.6 170
115230/ACE inhibitors 18.7 14.2 1000 18.1 17.2 650 18.7 17.8 950
140603/AII blockers 36.7 36.0 100 36.6 35.7 110 36.9 36.1 100
144822/PAF antagonists 2.5 1.7 970 1.4 1.3 260 2.0 1.9 850
152580/muscarinic agonists 12.8 16.1 100 6.3 4.7 20 13.5 14.4 70
158611/antihistamines 2.1 2.3 430 1.4 2.0 260 1.6 2.0 430
161853/dopamine agonists 4.5 7.1 760 4.6 27.5 80 5.9 6.6 800
170534/5-HT reuptake inhibitors 3.2 2.0 300 1.6 0.9 170 2.5 2.5 150
170958/oxytocin antagonists 2.8 2.2 100 1.8 3.0 260 2.5 1.7 510
187236/neurokinin antagonist 4.3 1.8 90 3.7 2.3 5 4.6 7.1 100
199183/HIV protease inhibitors 22.1 20.4 60 17.2 6.5 260 21.5 10.9 160
205402/leukotriene antagonists 8.7 7.2 50 6.1 3.2 220 9.2 3.1 420
221588/antiestrogens 2.9 4.1 300 2.9 3.1 270 3.7 5.2 650

mean 11.4 11.4 10.3 13.0 12.9 11.2

Initial Enhancement (@300)
090744/thrombin inhibitors 90.2 79.0 160 89.1 75.1 290 109.2 83.5 170
091323/anxiolytics 4.7 6.2 320 4.4 4.3 20 5.7 6.9 220
091342/opioid analgesics 17.5 23.2 800 30.8 26.1 40 30.2 30.2 470
091479/adrenergic agonists 32.6 34.3 330 44.6 72.1 220 37.7 42.9 170
115230/ACE inhibitors 34.9 76.1 1000 29.3 47.9 650 34.9 71.6 950
140603/AII blockers 37.2 37.2 100 37.2 37.2 110 37.2 37.3 100
144822/PAF antagonists 23.2 29.6 970 32.1 34.1 260 31.2 32.7 850
152580/muscarinic agonists 46.0 49.9 100 29.9 36.7 20 45.1 51.2 70
158611/antihistamines 30.0 44.8 430 51.6 59.2 260 44.8 50.7 430
161853/dopamine agonists 17.4 84.8 760 50.0 60.9 80 34.8 78.3 800
170534/5-HT reuptake inhibitors 18.9 18.9 300 5.0 7.6 170 7.6 22.7 150
170958/oxytocin antagonists 20.4 23.54 100 21.9 18.8 260 20.4 23.5 510
187236/neurokinin antagonists 11.0 16.7 90 12.9 14.7 5 12.9 27.6 100
199183/HIV protease inhibitors 55.6 56.0 60 60.3 69.8 260 62.9 58.2 160
205402/leukotriene antagonists 37.2 37.9 50 42.9 33.0 220 44.1 35.8 420
221588/antiestrogens 54.5 51.0 300 53.3 47.4 270 66.4 65.2 650

mean 33.2 41.8 366 ( 321 37.2 40.3 195 ( 154 39.1 44.9 388 ( 284

Table 3. Enhancements for best k vs k ) 400

global enhancement initial enhancement

probe/activity
Dice

APTT
LaSSI APTT

best k
LaSSI APTT

k ) 400
Dice

APTT
LaSSI APTT

best k
LaSSI APTT

k ) 400 best k

090744/thrombin inhibitors 71.6 53.2 6.4 109.2 83.5 57.1 170
091323/anxiolytics 1.5 1.1 1.1 5.7 6.9 5.6 220
091342/opioid analgesics 1.7 1.7 1.3 30.2 30.2 28.0 470
091479/adrenergic agonists 9.4 14.6 34.9 37.7 42.9 27.4 170
115230/ACE inhibitors 18.7 17.8 15.1 34.9 71.6 45.1 950
140603/AII blockers 36.9 36.1 30.0 37.2 37.3 37.2 100
144822/PAF antagonists 2.0 1.9 1.6 31.2 32.7 29.4 850
152580/muscarinic agonists 13.5 14.4 3.0 45.1 51.2 33.2 70
158611/antihistamines 1.6 2.0 1.9 44.8 50.7 50.2 430
161853/dopamine agonists 5.9 6.6 11.6 34.8 78.3 54.4 800
170534/5-HT reuptake inhibitors 2.5 2.5 1.7 7.6 22.7 8.8 150
170958/oxytocin antagonists 2.5 1.7 2.1 20.4 23.5 22.0 510
187236/neurokinin antagonist 4.6 7.1 7.8 12.9 27.6 20.3 100
199183/HIV protease inhibitors 21.5 10.9 4.8 62.9 58.2 43.1 160
205402/leukotriene antagonists 9.2 3.1 3.1 44.1 35.8 35.6 420
221588/antiestrogens 3.7 5.2 3.0 66.4 65.2 51.0 650

mean 12.9 11.2 8.1 39.1 44.9 34.3
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receptor site) and we should not necessarily expect all actives
to resemble the probe. Thus there are also some false actives.
Another quirk of patent-based databases is that some entries
are actually Markush representations. Despite these complica-
tions, comparisons between similarity methods should be valid,
because for any given probe the number of false actives and
false inactives is the same for all methods.

Choice of Example Probes for Similarity Searches.
The probes are shown in Figure 1. Table 1 shows how the
activities were constructed from key words in MDDR. The
probes and the corresponding therapeutic category were
selected such that the following were true: (1) the probe itself
was typical of a drug-like molecule or at least could be
considered a plausible medicinal chemistry lead, (2) com-
pounds in the same therapeutic category as the probe were
fairly numerous and several chemical classes were present,
(3) the therapeutic category was fairly specific, so that most
of the molecules probably work by the same mechanism.

Results

Measures of Merit for Standard Similarity
Searches. Figure 2 shows as an example of the graph
for the accumulation of actives versus rank for the probe
199183. Table 2 lists measures of merit for Dice vs
LaSSI similarities with the optimized value of k. The
last row of each table shows the enhancement averaged
over all the probes. This number can be taken as a
qualitative measure of goodness of the method.

For the sake of space, we do not show the results of
cosine definition for TOPOSIM, but it is clear that cosine
gives measures of merit that are consistently lower than
for Dice. Also, for any given probe, the Tanimoto
definition gives ranks identical to Dice. Thus we keep
Dice as the similarity definition of choice for TOPOSIM.
The LSI method for calculating similarity6 produces
much poorer results than the LaSSI similarity.

Table 2 shows that LaSSI and Dice are roughly
equivalent in global enhancement and there is no clear
advantage to using APTT vs AP and TT individually.
However, for initial enhancement there is a clear
advantage of LaSSI over Dice. This is not surprising
since k was adjusted to maximize the initial enhance-
ment. There is also clear advantage in the initial
enhancement in using APTT vs AP or TT for both Dice
and LaSSI. The optimum k for LaSSI varies from 5 to

1000 singular values for AP and TT descriptors and
from 70 to 950 for APTT. It is interesting that the mean
optimum k is much smaller for TT than AP. In our
previous work5 TT was shown to be much less fuzzy
than AP, and it is probable that using fewer singular
values in LaSSI is adding back some needed fuzziness.
For most practical searches, where the number of
compounds to be selected is much smaller than the size
of the database, the initial enhancement is the more
important measure, so henceforth we will emphasize the
initial enhancement over the global enhancement. Also,
when comparing Dice against LaSSI, we will henceforth
consider only the APTT combination since it appears
better than either descriptor alone for both methods.

In a real situation a user would not know the actives
in advance. It is therefore critical to know how sensitive
the measures of merit are to k. Figure 3 shows the initial
enhancement as a function of number of k for three
examples. Clearly the results can be somewhat sensitive
to k ,and different examples show different sensitivities.
If one is to choose a value of k to start with, one might

Figure 3. Initial enhancement for LaSSI APTT vs the number
of singular values k for three examples.

Figure 4. Correlation of rank for Dice APTT and LaSSI
APTT. The example is 199183 using 170 singular values. Each
circle represents a HIV protease inhibitor: (A) scatterplot over
the entire database; (B) closeup of the origin of A.
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choose k ) 400, a number near 388, the mean optimum
k over the examples. Table 3 compares the measures of
merit for the optimized k vs k ) 400. For about one-
third of the probes there is a significant degradation of
the initial enhancement at k ) 400. These are not
necessarily the ones where the optimum k differs the
most from 400, however. The degradation at k ) 400 is
never so bad that LaSSI is rendered useless, just
somewhat worse than Dice on the average.

Correlation of Ranks between Methods. When we
compare the ranks of actives by LaSSI and Dice, we see
that there is little to no correlation for any of the probes.
An example is shown in Figure 4. The actives are
scattered and do not fall near the diagonal. LaSSI is
clearly selecting very different actives than Dice. We
can select molecules with strikingly different ranks by
calculating disparity ) log(rank Dice/rank LaSSI).
Figure 5 shows examples from three probes where
abs(disparity) g 0.5 (the ranks differ by a factor of more
than ∼3) and one of the ranks > 300 and the other e
300.

Diversity of Actives. Figure 6 shows the MSP300
as a function of k for three probes. For any given probe,
the MSP300 for LaSSI is somewhat lower than MSP300
for Dice, indicating an extra bit of “fuzziness” provided
by LaSSI. We have found the MSP300 for LaSSI is fairly
constant for most probes until k goes below ∼20. In
other words, for most values of k LaSSI finds different

actives than Dice in the top 300, but the diversity of
those compounds is not very much larger. On the other
hand, for very low k, there is much more fuzziness
relative to Dice.

Figure 5. Selected active compounds that have extremely different ranks in Dice APTT vs LaSSI APTT. The examples are
161853 k ) 800 (dopamine agonists), 170534 k ) 150 (5-HT reuptake inhibitors), and 199183 k ) 160 (HIV protease inhibitors),
where k is the number of singular values. The ranks in two types of search are indicated.

Figure 6. Mean similarity of the probe to each molecule in
the top scoring 300 compounds (MSP300) for three examples.
The MSP300 for Dice searches are shown as a horizontal lines.
For comparison, the MSP300 for random sets of 300 com-
pounds from MDDR would be 0.12-0.14.
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Discussion
Similarity searches are the most useful early in a

drug-discovery project when few actives are known and
little is known about which features of these molecules
confer activity. It has been our experience that it is
always useful to use different methods of calculating
similarity, since each has a potentially different view
of chemistry. Rankings of compounds can be strongly
affected by descriptor5 and by definition of similarity.8
LaSSI certainly selects different actives than does Dice
and is thus a useful complement to TOPOSIM. LaSSI
and Dice give very different rankings for two reasons:
(1) In Dice, all descriptors are treated as distinct
entities. In LaSSI, some descriptors may be partly
synonymous with others. (2) In Dice, all descriptors are
given equal weight. In LaSSI, some descriptors, mostly
the very common or rare ones, are strongly down-
weighted.

LaSSI adds some useful features, but also adds some
complications relative to Dice. For Dice, the absolute
similarity of a particular database entry with the probe
is independent of other compounds in the database. In
contrast, the singular vectors for LaSSI depend on the
composition of the database as a whole, and as the
database is updated and a new SVD calculated, the
LaSSI similarity of a database entry with the probe may
change. Also, the fact that LaSSI has the number of
singular values k as an adjustable parameter adds
flexibility but also requires the user to select an initial
k. The goodness of the results can be sensitive to this
parameter and the optimum k varies unpredictably from
problem to problem. Fortunately, since LaSSI is so fast
to run (less than 20 s on an IBM SP2 workstation), it is
a trivial matter to run several searches at several
different values of k. One useful bootstrap procedure
starts with one or two known actives from the database
to be searched. One finds the value of k at which the

mean ranks of these molecules is a minimum and then
tests the high-scoring molecules at that value of k. As
more actives are found, one can further adjust k so that
all known actives have a minimum mean rank, etc. This
will be the subject of another paper in the series.9
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